Optimierte Zeitpakete im LAN

Clients in einem WAN oder LAN können sich über das Network Time Protocol NTP auf einen Zeitserver synchronisieren, der seinerseits auf einen 1PPS (1 Puls pro Sekunde) eines Zeitlabors synchronisiert ist. Das amerikanische National Institute of Standards and Technology in Boulder, Colorado (NIST) führte eine Untersuchung der Genauigkeit unterschiedlicher NTP-Server durch, die im LAN eingesetzt werden. Dabei fielen regelmäßige Zeitsprünge bei den Messungen bestimmter Zeitserver auf, die weitere Tests verursachten. Durch eine Zusammenarbeit mit dem Hersteller konnten nicht nur die Fehler beseitigt werden, sondern auch die Genauigkeit der Zeitpakete konnte insgesamt erheblich verbessert werden.

Im WAN (Wide Area Network) hat die Asymmetrie des Weges vom Server zum Client und zurück große Auswirkungen auf die Synchronisationsgenauigkeit. Die Genauigkeit der durch Zeitlabore zur Verfügung gestellten Zeitserver im WAN ist hoch und fällt auch deshalb weniger ins Gewicht, weil die Clientsoftware eine Auswahl an im WAN verfügbaren NTP-Servern treffen, und den errechnet zuverlässigsten heranziehen kann.

Das amerikanische NIST untersuchte nun die Genauigkeit von Zeitservern, die für die Zeit-Synchronisation im LAN (Local Area Network) verwendet werden. Die Verbindungswege zwischen Client und Zeitserver sind hier berechenbar. Neben der Auslastung des Netzwerkes liegt ein besonderes Augenmerk auf der Präzision der vom Zeitserver verschickten Zeitpakete. Eine hohe Synchronisationsgenauigkeit ist bei vielen Anwendungen entscheidend.

Der Messaufbau offenbarte in einer bestimmten Netzwerkkonstellation Zeitsprünge bei Zeitservern des amerikanischen Herstellers Masterclock. Zwar bewegte sich die Genauigkeit innerhalb der Spezifikation von besser als einer Millisekunde, aber der Fehler war dennoch auffällig. Um auf die Ursache zu kommen, entwickelte NIST eine Clientsoftware, die sehr schnelle User Datagram Protocol (UDP)-Anfragen an den NTP-Server richtet. Die Auswertung ergab ein deutliches Sägezahnmuster, mit dem der Hersteller konfrontiert wurde. Auch Masterclock erstellte einen eigenen Versuchsaufbau und konnte einen Rundungsfehler im Server Code ausfindig machen.

Masterclock nahm die Chance zur Überarbeitung der Server Firmware wahr und konnte die Genauigkeit der Zeitpakete signifikant steigern. Die beanstandeten Pakete wiesen einen Offset von bis zu 211.3 μs zu UTC auf, in einem Bereich von ~400 μs, also bereits erheblich präziser als die geforderte Genauigkeit von besser als 1 Millisekunde. Die Korrektur des Rundungsfehlers erhöhte die Synchronisationsgenauigkeit auf 118.0 μs, weitere Verbesserungen der Firmware ergaben schließlich 29.4 μs Synchronisationsgenauigkeit, der Noise-Bereich konnte auf 14 μs verringert werden.

Ein Fachvortrag zum Thema wurde auf dem Precise Time and Time Interval Meeting (PTTI) 2018 von NIST und Masterclock gemeinsam vorgestellt:
https://www.researchgate.net/publication/323600571_Improving_packet_synchronization_in_an_NTP_server

Time differences from an NTP server compared to UTCNIST obtained from rapid packet

Die Genauigkeit der Zeitpakete vor dem Update.

 

Die Verbindung von Navigationssimulator und Fahr-/Flugsimulator

Für die Funktion von ADAS (Advanced Driver Assistance Systeme) oder in der Zukunft völlig autonomen Fahrzeugen sind zuverlässige und exakte Angaben über die genaue Position, Geschwindigkeit und Zeit des Fahrzeuges entscheidend. Geliefert werden diese Daten von den globalen Satellitennavigationssystemen (GNSS).

Mit Hilfe zusätzlicher Korrekturmethoden kann die Position im dreidimensionalen Raum auf einige Dezimeter genau bestimmt werden. Darüber hinaus werden eine Vielzahl verschiedener Sensoren, darunter optische, wie LIDAR und RADAR, zur Erkennung von Hindernissen und Straßenmarkierungen eingesetzt. GNSS-Ortungs- und Bewegungsdaten können über drahtlose Datenverbindungen mit anderen Fahrzeugen (Car2Car) ausgetauscht oder an eine übergeordnete Infrastruktur gesendet werden ( Car2X). So können potentielle Unfälle frühzeitig verhindert werden, es sind keine drastischen Bremsmanöver mehr nötig, und auch die Entstehung von Staus wird immer seltener. Mithilfe der Flottensteuerungstechnik gelingt es sogar, Fahrzeuge zu erkennen, die für den Fahrer nicht sichtbar sind, weil sie beispielsweise in Kurven von Bauten oder einer Bepflanzung verdeckt werden. Die Weiterentwicklung von ADAS Systemen und immer autonomer funktionierenden Fahrzeugen führt zu mehr Sicherheit und höherer Effizienz im Straßenverkehr.

Um die Sicherheit von ADAS und autonomem Fahren zu gewährleisten, müssen Millionen von Testkilometern auf unterschiedlichen Straßen in verschiedenen Umgebungen gefahren werden. Es kann hier nicht vom idealen GNSS-Empfang ausgegangen werden. Insbesondere in Stadtzentren und Berggebieten kann der Navigationsdatenempfang durch die Abdeckung von Signalen durch Gebäude, Brücken, die Vegetation oder Berge gestört sein. Hinzu kommen Beeinträchtigungen durch GNSS-Signale, die auf ebenen und gebogenen Flächen reflektiert werden (multipath).

Darüber hinaus gibt es zusätzliche Störquellen, die GPS/GNSS-Empfänger potenziell blockieren, stören oder verfälschen können, insbesondere auf und direkt neben Autobahnen und in Städten. Das Testen ist in der Regel sehr zeitraubend und kostspielig wenn alle erforderlichen Kilometer tatsächlich gefahren werden müssen.

Um Kosten und Zeit einzusparen und auch die Sicherheit während der Tests für beteiligte und unbeteiligte Personen zu erhöhen, ist es effizienter, die GPS/GNSS- und Interferenzsignalumgebung und auch die Steuerung der autonomen Fahrzeuge realistisch zu simulieren.

Einen solchen Simulationsaufbau für die Navigation und Ortung von Connected Autonomous Vehicles (CAV) hat Spirent Communications plc, der englische Spezialist für GNSS-Simulatoren realisiert. Mittels Simulatoren können Tests von autonomen Fahrzeugen oder Drohnen im Labor durchgeführt werden. Die Vorteile liegen auf der Hand: ohne Gefahr für Unbeteiligte lassen sich so wiederholbare Tests auch in originalgetreu simulierten bewohnten Umgebungen durchführen, also dort, wo die Fahrzeuge schließlich auch eingesetzt werden sollen - und Kosten lassen sich dabei auch einsparen.

Zum Einsatz kommt einiges an hochkarätiger Technik. Die Basis bildet ein dSPACE Scalexio Rechensystem, das speziell für HIL (Hardware-in-the-loop) Projekte entwickelt wurde. Die Satellitendaten liefert ein Spirent GNSS Simulator. Die Fahrzeugsimulation übernimmt IPG CarMaker, eine Software für den virtuellen Test von PKW und leichten Nutzfahrzeugen. Sollen Drohnen und Drohnen-Schwärme virtuell getestet werden, kommt Microsoft AirSim zum Einsatz, eine open-source, cross-platform Drohnen-Simulationssoftware auf Basis der Spiele-Engine "Unreal Engine". Die durch Navigationsdaten gestützten Testfahrten werden mit Spirents Testszenario Software SimGEN erstellt. Für den letzten Schliff bei einer realistischen Signaldarstellung sorgt die 3D-Simulationssoftware SE-NAV der französischen Firma Oktal-SE. SE-NAV berücksichtigt Verfälschungen der Satellitensignale durch Reflexion, Ablenkung und Beugung auf umgebenden Oberflächen. Die Zusammenarbeit zwischen der GNSS Simulator Software SimGEN und der Fahrzeug oder Drohnen Simulator Software übernimmt Spirents SimREMOTE, ein für diesen Zweck erstelltes Interface.

Dieser Simulationsaufbau ermöglicht real-time Tests von Fahrzeugen, Flugzeugen oder Drohnen und die Analyse deren Bewegungs- oder Flugbahn, auch in kritischen Umgebungen - ohne das Labor zu verlassen.

Wenn der nächste öffentliche NTP Server nicht ausreicht

Während sich der heimische Rechner über eine per NTP (Network Time Protocol) und öffentlichem NTP-Server automatisch gestellte Uhr im zwei bis dreistelligen Millisekundenbereich freut, reicht diese Genauigkeit in sensiblen Netzwerken bei weitem nicht aus. Wo die Bandbreiten groß sind, der Zeitstempel auf dem Datenpaket entscheidend oder die Sicherheitsansprüche erhöht, muss ein vermehrtes Augenmerk auf die Zeitsynchronisation im Netzwerk gelegt werden.

Helfen kann hier die seit über 40 Jahren mit dem Thema „präzise Zeit“ beschäftigte Firma Lange-Electronic GmbH aus Bayern, die sich die beiden Netzwerk Timing Profis Masterclock (USA) und Elproma (Polen) ins Boot geholt hat, um den deutschsprachigen Raum mit zuverlässiger und hoch-genauer Zeit im Ethernet zu versorgen.

Beim amerikanischen Hersteller Masterclock ist der Name bereits Programm. Spezialisiert auf digitale und analoge Zeitanzeigen, die per NTP auf dem richtigen Stand gehalten werden, bietet Masterclock auch Zeit- und Frequenzgeneratoren an, die als stabile Hauptuhren (Masterclocks) im Netzwerk per NTP zur Verfügung stehen. Optional kann die Zeit über PTP (Precision Time Protocol) oder diverse Zeitcode-Ausgänge direkt verteilt werden.

Einen Schritt weiter geht die ursprünglich 1992 in den Niederlanden gegründete und seit 1998 in Polen ansässige Firma Elproma. Mit internationalen Innovationspreisen ausgezeichnet, hat die ISO 9001 und IQnet zertifizierte Firma schon mehrfach als Spezialist für die Ethernet Zeitsynchronisations-Protokolle NTP und PTP-IEEE1588 an Forschungs- und Entwicklungsprojekten teilgenommen, so zum Beispiel an CERN White Rabbit und DEMETRA Horizon 2020. Im Rahmen des 2017 abgeschlossenen DEMETRA Projektes wurden Zeitsynchronisations-Services untersucht, einige davon auf Basis des europäischen Satellitennavigationssystems GALILEO. Dabei wurden auch einige Schwächen aufgedeckt. Kritische Infrastrukturen wie beispielsweise intelligente Netze von Stromversorgern (Smart Grids) können durch unzureichende Vorsorge bei der Zeit-Synchronisation anfällig für Angriffe und damit teure Ausfälle sein.

Die Forschungsergebnisse finden in den Elproma Zeitservern ihre Anwendung. Bei Bedarf können die Systeme redundant aufgebaut werden, so dass sie die Zeit über zwei Multi GNSS (Global Navigation Satellite System) Empfänger beziehen können, zusätzlich sind sie abgesichert über interne hoch-genaue Oszillatoren. Erreicht wird dadurch eine Genauigkeit von besser als 15 Nanosekunden relativ zu UTC (Universal Time Coordinated). Bei der Verteilung der Zeit im LAN ermöglicht der modulare Aufbau der Geräte Abstufungen. Mit den Modulen für das Network Time Protocol NTP (LAN 1 und LAN2) und Software Time Stamping werden besser als 10 µsec erreicht. Erheblich genauer – besser als 200 Nanosekunden - wird die Synchronisation bei Verwendung von PTP und den optionalen ARM-basierten PTP-Modulen für LAN3 bis LAN10 mit eigenen IP-Stacks und Hardware Time Stamping. Eine Erweiterung für DCF-77 wäre erhältlich, allerdings genügt hier die mögliche Genauigkeit den Ansprüchen der Geräte eigentlich nicht, es würde sich also maximal um eine zusätzliche Ausfallabsicherung handeln.

Diese hohe Genauigkeit wird benötigt um Rechnernetze beispielsweise im Bereich Telekommunikation, Stromversorgung, Wertpapierhandel oder Forschung und Entwicklung zeitlich zu synchronisieren.

sub content trenngrafik

Kontaktieren Sie uns

 

 

Ja, ich habe die Datenschutzerklärung zur Kenntnis genommen und bin damit einverstanden, dass die von mir angegebenen Daten elektronisch erhoben und gespeichert werden. Meine Daten werden dabei nur streng zweckgebunden zur Bearbeitung und Beantwortung meiner Anfrage benutzt. Mit dem Absenden des Kontaktformulars erkläre ich mich mit der Verarbeitung einverstanden.

Newsletter

I agree with the Nutzungsbedingungen

GNSS (Global Positioning Satellite Systems) SimulationGenaue Zeit und Frequenz generieren, verteilen und überwachenZeitsynchronisation, Netzwerk Zeit ServerUhren, Zeitdisplays, innen und aussen

Nach oben
Nach unten